
CMPSCI 677 Distributed Operating Systems Spring 2025

Lecture 22: April 23
Lecturer: Prashant Shenoy Scribe: Srikrushna Pinaki Budi (2025), Shrutiya Mohan (2024)

22.1 File System Basics

22.1.1 File

A file is a container of data in text format, binary format etc. which is stored on a disk so that the user can
re-visit it at a later point in time. In UNIX, a file is an uninterpreted sequence of bytes which implies that
the file system is unaware of the contents/type of the file. Other operating systems like Windows and Mac
knows the file types (This information can be useful to open a file in the right application).

22.1.2 File System

• File system abstracts and provides a logical view of data (a hierarchy of files and folders) and storage
functions.

• It helps us to create, modify, organize and delete files and takes care of how to map them to the
underlying storage device.

• It provides a user-friendly interface so that the user need not deal with the low-level interfaces exported
by the disk.

• It allows us to share the files among other users by giving permissions and also allows us to protect
the files.

22.1.3 UNIX File System Review

• In UNIX, the files structure can be viewed as a directed acyclic graph. Note that this looks like a tree
structure but can contain soft links pointing from one directory to other which makes it a DAG. Each
directory entry for each file contains the file name, inode number (metadata for the file), major device
number and minor device number. All inodes are stored at a particular location on the disk called
super block. To access the file, the file system needs to first get this metadata to know where the file
is located in the actual disk (aka block locations of the file).

• An inode structure consists of the fields like mode, Owner ID, group id, Dir file, protection bits, last
access time, size, reference count, address[0]...address[14] etc. The addresses stores the pointers to the
data blocks. The first 12 are the direct blocks which stores the pointers to the data blocks (see figure
22.1), the 13th address stores the pointers to the location which in turn stores the pointers to the direct
data blocks (one level of indirection). The 14th address follows two levels of indirection which stores
the pointers to one level indirection blocks. So the hierarchy grows as the size of the file grows but we
have an upper limit of the size of the file that can be stored on this file system because we only have
a certain number of pointers in addresses (In this case from 0 till 14).

22-1

22-2 Lecture 22: April 23

Figure 22.1: Inode structure

22.2 Distributed File Systems (DFS)

If files on a different machine can be accessed, it is a distributed file system. Another way to think about
DFS is that the servers store different files on different servers, and all the servers collectively form your file
system.

22.2.1 File server

A machine that stores all the files.

22.2.2 File service

The interface that the machine exposes for other machines to access the files on this machine. For example
NFS uses RPCs to send read/write requests to a remote file system. There are two types of file services as
shown in figure 22.2.

• Remote access model: The client requests are sent to the server and the server sends back the results
after doing the work requested by the client. This model is typically stateful since we need to keep
track of which clients are accessing which file and so on. This might eventually cause the server to
become a bottleneck if there are many incoming requests from multiple clients (I/O bottleneck at the
server).

• Upload/download model: When the client performs a request to the server, entire file is sent as a copy
to the client, and subsequent access are made to the local copy. To maintain consistency, the client
eventually sends back the changed file to the server. This model works only if there is one client one
file at a time, hence maintaining consistency.

Lecture 22: April 23 22-3

Note: As the files are directly updated on the server, there is consistency in the remote access model, but
each operation is an RPC call which makes it slow. In upload/download model, there is a period of time in
which the file on the server is out of date. Having said that, upload/download model gives better performance
as the operations are taking place on the local machine and very less calls are made to the remote machine.

Figure 22.2: Remote access model(left), Upload/download model(right).

Question: Which model does Google Docs use?
Answer: Google docs is a cloud service and not a distributed file system in a technical sense. Today,
Google, One drive, Dropbox provide a form of remote storage that looks like distributed file system, but is
not necessarily the same. Answering the question, google docs model depends on the mode of the browser.
In the online version, every change is saved on the cloud server instantly, while in the offline mode, there is
a copy at the client and a master copy at the server.

22.2.3 Server Type

There are two types of server and one would need to make the choice from one of them when building any
distributed file system.

Stateless server: No information about clients is kept at the server.

Stateful server: Server maintains information about the client accesses. It is less tolerant to failures because
the state is lost when a server crashes. There is slight performance benefit here due to the compact request
messages (Clients do not need to send the information like permissions every time the request is being made).
Consistency and idempotency are easier to achieve.

Note: An Idempotent server executes as if it has performed the request only once regardless of how many
times same request was received.

22.2.4 Network File System (NFS)

NFS is a layer on top of an existing file system that allows to share the file system over a network. NFS is
implemented using virtual file system layer supported by the underlying operating system. Virtual file system
layer can be seen as a forwarding layer that looks at where is the file stored and invoke that file system(local
file system for local files and possibly NFS for remote files). Here, the client and server communicate with
each otehr using RPC calls. The VFS layer in the client and server provides a system independent abstraction
to the layer above it. Thus, no need to worry about the type of the filesystem the file is stored on.

Note: Till version 3, NFS used stateless server protocol but from version 4, it uses stateful server protocol.
So it now supports open call to a remote file.

22-4 Lecture 22: April 23

Figure 22.3: Network File System (NFS)

Figure 22.4: Difference in communication in NFS version 3 and version4.

In figure 22.4, we can observe that in version 3 of NFS, individual LOOKUP and READ RPC calls were
needed whereas in version 4 of NFS, we can perform a batch RPC request. Version 3 executes one RPC per
operation, whereas version 4 supports multiple RPC calls per operation(batched).

Question: Is the NFS Client and Server implemented as a user space process or is it implemented inside the
kernel?

Answer: It is an in kernel implementation. It is not a user space process. In most operating systems, NFS
code is going to reside inside the kernel like any other file system code but this is just distributed in nature.

Question: Why is Lookup triggered?

Answer: We usually access a file by opening the file and reading it. This eventually will go to the OS as
a system call that’s called an open system call at the OS level. This will go to a virtual file system layer
and then the NFS Client and client has to service the open but version3 does not have a concept of an open
so instead it is going to send a lookup operation to the server saying client wants to access this file. Then
checks if file name is valid and if client has privileges to access it. It sends a response in a yes or no (yes if
open call succeeds) then we get another read system call and another RPC is triggered.

22.2.5 Mount protocol

Mount protocol is a way how a NFS client gets access to a remote file system. Certain directories can be
mapped from remote file system to the local file system in order to get access.

Lecture 22: April 23 22-5

Figure 22.5: Mount Protocol

Question: Client A can access few files in the mounted directory and Client B can access few files in the
mounted directory, can you see all of those files?

Answer: The visibility of these files is controlled by file permissions. Similar to Unix we set the file permissions
which mention read write and execution permissions to other users. OS will control this and file sharing can
be done in distributed systems in the same way.

Question: Does mounting create a list of files stored on the server or are you always going to lookup files on
the server?

Answer: Mounting is simply a mapping. It is not going to create any list. Mounting creates a mapping
from the directory searched to the directory’s location on the server. Client OS is not going to know what
is stored in the directory. So when the user tries to access anything inside the directory, all the operations
are sent to the server and whatever responses are returned are checked.

Question: Is concurrent access possible in this model?

Answer: There are two types of concurrent accesses: accessing same file, accessing same volume of files.
It is of course possible, example Ed Lab with multiple users accessing the file volume on the system and
working on it concurrently. To access the same file, it is possible but we need locking mechanisms to avoid
overwriting each other’s data.

22.2.6 Crossing mount points

Crossing mount points is mounting nested directories from multiple servers. NFS v3 does not support
transitive exports NFS v4 allows clients to detect crossing of mount points and supports recursive lookups.

Question: What happens if the Client tries to access inner nested file which is local to Server B?
Answer: In NFS version 3 it does not allow transitive exports for security reason. It will return an error.
But in version 4 first RPC request will go to Server A which will then forward it to Server B and perform
the operation and send back the response.

22.2.7 Automounting

Automounting is also known as mounting on demand. The mappings get established but the mounting only
happens when the user tries to access those directories. And if there is an idle time, it unmounts. This way
we can reduce the amount of kernel resources used.

22-6 Lecture 22: April 23

Figure 22.6: Crossing Mount Points

Figure 22.7: Automounting

22.2.8 File attributes

There are specific attributes (like TYPE, SIZE, CHANGE, FSID) that a file system must to support to be
compatible with NFS. There are other attributes (like OWNER of a file) which are not mandatory to be
compatible with NFS but are recommended.

22.2.9 Semantics of file sharing

• In UNIX semantics, every operation on a file is instantly visible to all the other processes using the
same file.

• In session semantics, no changes are visible to other processes until the file is closed.

• Immutable files cannot be mutated. A new version of the file needs to be created if we need any
changes.

• In transaction semantics, all changes occur atomically.

Note: NFS follows semantics in between UNIX and session. It caches the file and periodically flushes the

Lecture 22: April 23 22-7

changes to the server. If one process writes to a file, the other process might have a different or outdated
version of the file for a period of time. NFS uses local caches for performance reasons which leads to this
weak consistency.

22.2.10 File locking in NFS

• Version 3 of NFS used stateless server protocol. One of the uses of having a state is file locking. Version
4 of NFS uses stateful server protocol, so applications can now use locks to ensure consistency. File
locking can be done in different ways like locking the entire file, locking a specific range of bytes in a
file etc.

• In share reservations file locking, we have the notion of a denial state where if an application has a
write denial state to a file, it cannot write to the file but it can read the file.

22.2.11 Client Caching: Delegation

Figure 22.8: Delegation

NFS supports the concept of delegation as part of caching. The client receives a master copy of the file to
which the client can make updates. Upon completion, the client can send the file back to the server. This
is similar to the concept of upload/download model. Thus, the server is delegating the file to the client so
that the client can have a local copy. If another client tries to access the file, the server recalls the delegation
given to previous client. The previous client returns the file to the server and then the server uses the old
model where multiple clients can access the file by read/write requests to the sever.

Question: When does the server decide to delegate the file?
Answer: Since this feature is stateful, it is only present in version 4. If the server is serving only one client
then the server can delegate the file. Otherwise since the server is not the current owner of the file, the
server can not delegate and thus has to use the old model. For example, files in the user’s home directory
can be delegated, whereas binaries of application programs can not be delegated as multiple users might
access them.

Question: Is there a way to periodically update the server as in case of client failure the files may get lost?
Answer: It is possible for the client to flush the changes to the server in the background while it still holds
the master copy.

Question: The client is updating the file and the server recalls the delegation, what happens to the update?
Answer: It is fine for the client to perform all outstanding operations, have them finish and then send the
file back. There is no need to cancel any write operations, it can wait and then send the latest version and

22-8 Lecture 22: April 23

all subsequent accesses of the file back to the server, as we cannot have any local copy on the client. The
open call will just take longer because the file has to come back to the server.

Question: Does it have any security concern? Can the file have make any unsanctioned updates?
Answer: The unsanctioned updates are not an issue because if the process has read and write access to the
file, it can write whatever it wants. Access Control is the responsibility of the OS.

22.2.12 RPC Failures

Figure 22.9: RPC Failures

For RPCs being used over TCP, TCP will take care of retransmissions between client and server. For RPCs
over UDP, client and server can decide how to deal with lost requests and replies. Every RPC request is
associated with an ID. Upon receiving an RPC request from the client, the server will maintain the request
and response for that request in its cache. If the client resends the request and the reply was lost, the server
will simply send the reply from the cache, instead of executing it again.

Question: What is the utility of UDP over TCP?
Answer: UDP is faster than TCP as there is three-way handshake in TCP. In LANs, where probability of
loss is low, RPCs can be sent over UDP. Over WANs or noisy LANs TCP may be preferred.

Question: For how long can the reply be kept in the cache?
Answer: It depends on the application. Practically, after some unsuccessful tries within an hour, the client
may assume that the server is down. So the replies can be cached for some hours.

Question: Is caching reply specific to some version of NFS?
Answer: It is not specific to some verison of NFS. In NFS v1, there was no concept of RPCs over TCP.
Thus, this method was used for RPCs over UDP. Currently, with the advent of RPCs over TCP, this method
is not needed to be used.

Question: Is the cache needed only so that the requests are idempotent?
Answer: Yes. For example, if requests are changing files, it might incur problems if they are not idempotent
and if requests are needed to be idempotent the cache is required.

Question: Who is responsible for keeping the IDs unique, client or the server?
Answer: The IDs have to be generated at the client. This can be made unique by using the client’s IP
address followed by a number that is incremented sequentially for each RPC call.

Lecture 22: April 23 22-9

Figure 22.10: Secure RPCs

22.2.13 Security

Versions 1, 2 and 3 of NFS relied on a simple security model. Every request is sent with user ID and
group ID. The server checks for the file permissions on the basis of user ID and server ID. This ensures only
authenticated users can access the file. One drawback of this is that the channel between client and server,
however, is not still secure. If an adversary intercepts the network traffic, the contents of a secure file may
be exposed. In version 4, the concept of secure RPCs was introduced. Every RPC client stub sends the
request to the security layer which encrypts the request before sending. Thus, file contents can not be read
on the network.

Question: Client can send user ID and group ID, but how does the server know if it is authentic?
Answer: As long as the server trusts the OS on the client the server knows the user ID and group ID are
authentic. However, if the OS is corrupted/hacked the server can not trust the client

22.2.14 Replica Servers

There may be multiple servers serving different set of files. Version 4 allows the files to be replicated. Client
can make request for accessing files from any of the replicas. NFS provides implementation of maintaining
consistency between the replicated servers.

